

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name				
Flight rules				
Course				
Field of study		Year/Semester		
Aviation		2/4		
Area of study (specialization)		Profile of study		
Flight Training For Civil Aviation		general academic		
Level of study		Course offered in		
First-cycle studies		polish		
Form of study		Requirements		
full-time		compulsory		
Number of hours				
Lecture	Laboratory classes	Other (e.g. online)		
30				
Tutorials	Projects/seminars			
Number of credit points 2				
Lecturers				
Responsible for the course/lecturer:		Responsible for the course/lecturer:		
El Jundi Michał Murad		Kajetan Szymańczyk		

Prerequisites

The student starting this subject should have basic knowledge of aircraft control. He should also have the ability to apply the scientific method in solving problems and be ready to cooperate within a team.

Course objective

To acquaint the student with the operation of airplane control systems.

Course-related learning outcomes

Knowledge

1. has extended and in-depth knowledge of mathematics including algebra, analysis, theory of differential equations, probability, analytical geometry as well as physics covering the basics of classical mechanics, optics, electricity and magnetism, solid state physics, thermodynamics, useful for formulating and solving complex technical tasks related to engineering aeronautical and modeling

2. has ordered, theoretically founded general knowledge in the field of technology and various means of air transport, about the life cycle of means of transport, both hardware and software, and in particular about the key processes taking place in them

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

3. has ordered and theoretically founded general knowledge in the field of key technical issues and detailed knowledge of selected issues related to air transport, knows the basic techniques, methods and tools used in the process of solving tasks related to air transport, mainly of an engineering nature

4. has ordered, theoretically founded general knowledge covering key issues in the field of technical thermodynamics, fluid mechanics, in particular aerodynamics

5. has an ordered, theoretically founded knowledge in the field of engineering graphics and machine construction: technical drawing, object projection, basic principles of engineering graphics, the use of CAD (Computer Aided Design) graphic programs in the construction of machines

6. has detailed knowledge related to selected issues in the field of manned and unmanned aircraft construction, in the field of on-board equipment, control systems, communication and recording systems, automation of individual systems, has basic knowledge of flight simulation training devices and simulation methods used to solve air transport issues

7. has extended knowledge in the field of material strength, including the theory of elasticity and plasticity, stress hypotheses, methods of calculating beams, membranes, shafts, joints and other structural elements, as well as methods of testing the strength of materials and the state of deformation and stress in structures, and has basic knowledge of the main departments of technical mechanics: statics, kinematics and dynamics of a material point and a rigid body

8. has basic knowledge of metal, non-metal and composite materials used in machine construction, in particular about their structure, properties, methods of production, heat and thermo-chemical treatment and the influence of plastic processing on their strength, as well as fuels, lubricants, technical gases, refrigerants e.t.c.

9. has the ability to self-study with the use of modern teaching tools, such as remote lectures, websites and databases, teaching programs, e-books

Skills

1. is able to obtain information from various sources, including literature and databases, both in Polish and in English, integrate them properly, interpret them and make a critical evaluation, draw conclusions and exhaustively justify the opinions they formulate

2. is able to properly use information and communication techniques, applicable at various stages of the implementation of aviation projects

3. is able to properly select materials for simple aviation structures, and can indicate the differences between the fuels used in aviation

4. is able to communicate using various techniques in the professional environment and other environments using the formal notation of construction, technical drawing, concepts and definitions of the scope of the study field of study

5. can solve tasks using basic knowledge of aerodynamics, flight mechanics and body flow

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

6. can solve tasks using basic knowledge of aerodynamics, flight mechanics and body flow

7. can analyze objects and technical solutions, can search in catalogs and on manufacturers' websites, ready components of machines and devices, including means and devices, assess their suitability for use in their own technical and organizational projects

8. can use the language of mathematics (differential and integral calculus) to describe simple engineering problems.

9. is able to organize, cooperate and work in a group, assuming various roles in it, and is able to properly define priorities for the implementation of a task set by himself or others

10. is able to plan and implement the process of own permanent learning and knows the possibilities of further education (2nd and 3rd degree studies, postgraduate studies, courses and exams conducted by universities, companies and professional organizations)

Social competences

1. understands that in technology, knowledge and skills very quickly become obsolete

2. is aware of the importance of knowledge in solving engineering problems and knows examples and understands the causes of faulty engineering projects that have led to serious financial and social losses, or to a serious loss of health and even life

3. is aware of the social role of a technical university graduate, in particular understands the need to formulate and provide the society, in an appropriate form, with information and opinions on engineering activities, technological achievements, as well as the achievements and traditions of the engineer profession

4. correctly identifies and resolves dilemmas related to the profession of an aerospace engineer

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Lecture:

- assessment of knowledge and skills demonstrated on the written test - 1.5 hour

Programme content

Lecture:

semester 4:

The relationship between lift coefficient and speed in steady, straight, and level flight. High-speed aerodynamics: speed, shock waves, effects of exceeding the critical Mach number (MCRIT), means to

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

influence critical Mach number (MCRIT). The stall, the spin. Static and dynamic stability. Control. Operating limitations. Propellers. Flight mechanics

Teaching methods

1. Lecture: multimedia presentation, illustrated with examples given on the board.

Bibliography

Basic

1. "Principles of Flight" (JAR Ref 080). JAA ATPL Training. Germany 2004

2. "Podstawy Aerodynamiki i Mechaniki Lotu". Abłamowicz A. Nowakowski W., Wydawnictwo Komunikacji i Łączności, Warszawa 1980

3. "Praktyczna aerodynamika i mechanika lotu samolotu odrzutowego, w tym wysokomanewrowego", Milkiewicz A.. Wydawnictwo ITWL, Warszawa 2009

4. "Podstawy eksploatacji statków powietrznych", Lewitowicz J., Wydawnictwo Instytutu Technicznego Wojsk Lotniczych, Warszawa 2001

Additional

Breakdown of average student's workload

	Hours	ECTS
Total workload	47	2,0
Classes requiring direct contact with the teacher	40	1,8
Student's own work (literature studies, preparation for exercises,	7	0,2
preparation for colloquium, preparation for passing) ¹		

¹ delete or add other activities as appropriate